skip to main content


Search for: All records

Creators/Authors contains: "Willis, Michael J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Patagonia Icefields (PIF) are the largest non-polar ice mass in the southern hemisphere. The icefields cover an area of approximately 16,500 km 2 and are divided into the northern and southern icefields, which are ~ 4000 km 2 and ~ 12,500 km 2 , respectively. While both icefields have been losing mass rapidly, their responsiveness to various climate drivers, such as the El Niño-Southern Oscillation, is not well understood. Using the elastic response of the earth to loading changes and continuous GPS data we separated and estimated ice mass changes observed during the strong El Niño that started in 2015 from the complex hydrological interactions occurring around the PIF. During this single event, our mass balance estimates show that the northern icefield lost ~ 28 Gt of mass while the southern icefield lost ~ 12 Gt. This is the largest ice loss event in the PIF observed to date using geodetic data. 
    more » « less
  2. Atmospheric and oceanic warming over the past century have driven rapid glacier thinning and retreat, destabilizing hillslopes and increasing the frequency of landslides. The impact of these landslides on glacier dynamics and resultant secondary landslide hazards are not fully understood. We investigated how a 262 ± 77 × 106 m3 landslide affected the flow of Amalia Glacier, Chilean Patagonia. Despite being one of the largest recorded landslides in a glaciated region, it emplaced little debris onto the glacier surface. Instead, it left a series of landslide-perpendicular ridges, landslide-parallel fractures, and an apron of ice debris—with blocks as much as 25 m across. Our observations suggest that a deep-seated failure of the mountainside impacted the glacier flank, propagating brittle deformation through the ice and emplacing the bulk of the rock mass below the glacier. The landslide triggered a brief downglacier acceleration of Amalia Glacier followed by a slowdown of as much as 60% of the pre-landslide speed and increased suspended-sediment concentrations in the fjord. These results highlight that landslides may induce widespread and long-lasting disruptions to glacier dynamics. 
    more » « less